Elements of a graph

In many experiments, we make measurements to collect data. A graph is a pictorial way of presenting a set of data. It can help analyze the data in the following ways.
1 It allows you to easily see how one physical quantity is related to another, e.g. whether they are directly proportional to each other.
2 It can be used to determine the constants in an equation relating two physical quantities, e.g. slope and intercepts of a straight-line graph.

3 It provides the best way of 'averaging' a set of data, thus reducing the effect of the errors of individual measurements.

The following example shows what elements are included in a graph.

Example

In an experiment, a beaker of water is heated by a Bunsen burner. The temperature of the water at different time instants is measured and recorded in the table below. Plot a graph of temperature against time.

Time $/$ min	0	1	2	3	4	5
Temperature $/{ }^{\circ} \mathbf{C}$	18	31	42	55	66	77

Solution

Add the following items on graph paper.
(1) Vertical and horizontal axes
(2) Variable and unit for each axis
(3) Scale on each axis: carefully chosen to let the graph fill most of the graph paper
(4) Data points: usually marked by ' x ' or ' \odot '
(5) Line showing the trend: If a straightline graph is expected, draw a line of best fit. Such a straight line passes through most of the points and those not on the line are evenly spaced about it. If a straight-line graph is not expected, draw a smooth curve.
(6) Title (if necessary): describing what the graph is about

* A graph should be drawn with a sharp pencil. All straight lines (the axes and the line of best fit) should be drawn with a ruler.
(6) A graph showing the temperature of water against time during heating
temperature $1{ }^{\circ} \mathrm{C}$

Exercise

1 What is the problem with each of the following graphs? Choose the answer from the box below.
A The axis scale is not suitably chosen.
B The axes are not properly labelled.
C The line of best fit is not correctly drawn.
D Data points are not accurately marked.
(a)

A graph of length of the liquid column in an alcohol-in-glass thermometer against temperature

(c)

A graph showing the distance travelled s against time t

(b)

A graph showing the speed of a car against time

(d)

A graph showing the temperature θ of a metal block against time t

2 A hot object is allowed to cool at a constant rate. The temperature θ of the object at different time instants t is recorded in the table below.

$\boldsymbol{t} / \mathbf{m i n}$	0	10	20	30	40	50	60	70
$\boldsymbol{\theta} /{ }^{\circ} \mathbf{C}$	78	72	68	58	49	44	40	34

(a) (i) Plot a graph of θ against t on the graph paper provided below.

(ii) Is the graph a straight line or a curve?
(b) Estimate the temperature of the object at $t=45 \mathrm{~min}$.

Elements of a graph

3 The resistance of a thermistor in a thermistor thermometer decreases when the temperature increases.
The table below shows the resistance R at various temperatures T.

$\boldsymbol{T} /{ }^{\circ} \mathbf{C}$	0	8	16	24	32	40	48	56	64	72	80
$\boldsymbol{R} / \boldsymbol{\Omega}$	900	580	380	250	160	105	70	45	35	22	10

(a) Plot a graph to show how R changes with T.

(b) What is the temperature when the resistance is 200Ω ?

Answers

1 (a) B
(b) D
(c) C
(d) A

2 (a) (i)

(ii) A straight line
(b) At $t=45 \mathrm{~min}$, the temperature is $49^{\circ} \mathrm{C}$.

3 (a)

(b) When $R=200 \Omega$, the temperature is $28^{\circ} \mathrm{C}$.

