Pythagoras' theorem and trigonometric functions

a Pythagoras' theorem

Pythagoras' theorem states that for any right-angled triangle, the three sides are related by the following equation:

$$
c^{2}=a^{2}+b^{2}
$$

Therefore, by using this equation, if the lengths of two sides of the triangle are known, the length of the third side could be found.

Consider a right-angled triangle with $a=3 \mathrm{~cm}$ and $b=4 \mathrm{~cm}$.

By Pythagoras' theorem,

$$
\begin{aligned}
& c^{2}=a^{2}+b^{2} \\
& c=\sqrt{a^{2}+b^{2}}=\sqrt{3^{2}+4^{2}}=\sqrt{25}=5 \mathrm{~cm}
\end{aligned}
$$

You can verify this result by measuring c with a ruler.

More to know...

Pythagoras' theorem was named after the ancient Greek mathematician Pythagoras who was perhaps the first to give a proof of the theorem. Pythagoras showed that, for the squares on each side of a right-angled triangle, the area of the largest square is the sum of the area of the other two squares.

Example

Find the unknown in each of the following right-angled triangles.
(a)

(b)

Solution

(a) By Pythagoras' theorem,

$$
\begin{aligned}
& x^{2}=5^{2}+12^{2} \\
& x=\sqrt{5^{2}+12^{2}}=\sqrt{25+144}=\sqrt{169}=13 \mathrm{~cm}
\end{aligned}
$$

(b) By Pythagoras' theorem,

$$
\begin{aligned}
& 25^{2}=7^{2}+y^{2} \\
& y=\sqrt{25^{2}-7^{2}}=\sqrt{625-49}=\sqrt{576}=24 \mathrm{~cm}
\end{aligned}
$$

Exercise 1

1 Find the unknown in each of the following right-angled triangles.
(a)

(b)

(c)

6.72 cm
(d)

（b）Trigonometric functions

Consider the right－angled triangle shown．The trigonometric functions are defined as follows．
The sine（正弦）of angle $\theta: \quad \sin \theta=\frac{a}{c}$
The cosine（餘弦）of angle $\theta: \quad \cos \theta=\frac{b}{c}$
The tangent（正切）of angle $\theta: \quad \tan \theta=\frac{a}{b}$

Note that trigonometric functions do not have any unit．

Example

Given a right－angled triangle，find（a） $\sin \theta$ ；（b） $\cos \theta$ ；and（c） $\tan \theta$ ．

Solution

From the triangle，$a=2 \mathrm{~cm}, b=4 \mathrm{~cm}$ and $c=\sqrt{20} \mathrm{~cm}$ ．

（a） $\sin \theta=\frac{a}{c}=\frac{2}{\sqrt{20}}=0.447$
（b） $\cos \theta=\frac{b}{c}=\frac{4}{\sqrt{20}}=0.894$
（c） $\tan \theta=\frac{a}{b}=\frac{2}{4}=\frac{1}{2}=0.5$

Example

Consider the right－angled triangle as shown．Find
（a） $\sin \theta$ ；
（b） $\cos \theta$ ；and
（c） $\tan \theta$ ．

Solution

From the figure，$a=6 \mathrm{~cm}$ and $c=9 \mathrm{~cm}$ ．Side b can be found by Pythagoras＇theorem．

$$
c^{2}=a^{2}+b^{2} \Rightarrow b=\sqrt{c^{2}-a^{2}}=\sqrt{9^{2}-6^{2}}=\sqrt{45}=3 \sqrt{5} \mathrm{~cm}
$$

（a）$\quad \sin \theta=\frac{a}{c}=\frac{6}{9}=\frac{2}{3}=0.667$
（b） $\cos \theta=\frac{b}{c}=\frac{3 \sqrt{5}}{9}=0.745$
（c） $\tan \theta=\frac{a}{b}=\frac{6}{3 \sqrt{5}}=0.894$

More to know．．．

In a right－angled triangle with an acute angle θ ，the sides of triangle are named as follows：
Hypotenuse（斜邊）：the longest side in the triangle which is opposite the right angle
Adjacent side（鄰邊）of θ ：the side next to θ（but not the hypotenuse）
Opposite side（對邊）of θ ：the side opposite to θ

If the angle θ in a right－angled triangle is known，the trigonometric functions can be easily found by using a scientific calculator．For example，if $\theta=30^{\circ}, \sin 30^{\circ}=0.5$ ． （Remember to set the calculator in＇degree＇mode first．）

The sine ratio is always equal to 0.5 for any right－angled triangle with $\theta=30^{\circ}$ ．From this，we can see that the trigonometric functions for any two triangles with the same θ will remain the same no matter how big or small the triangles are．The ratios depend on θ only．

$$
\begin{array}{ll}
\sin \theta=\frac{3}{5} & \sin \theta=\frac{30}{50}=\frac{3}{5} \\
\cos \theta=\frac{4}{5} & \cos \theta=\frac{40}{50}=\frac{4}{5} \\
\tan \theta=\frac{3}{4} & \tan \theta=\frac{30}{40}=\frac{3}{4}
\end{array}
$$

Conversely，we can find the angle θ if one of the trigonometric functions is given．This can also be done by using a scientific calculator．

Example

Find the unknowns in the following figure.

Solution

By Pythagoras' theorem,

$$
\begin{aligned}
& a^{2}=6.5^{2}-5^{2} \\
& a=\sqrt{6.5^{2}-5^{2}}=4.15 \mathrm{~cm}
\end{aligned}
$$

$\sin x=\frac{5}{6.5} \quad \Rightarrow \quad x=50.3^{\circ}$
$\cos y=\frac{5}{6.5} \quad \Rightarrow \quad y=39.7^{\circ}$

More to know...

In the above example, we need to find the inverse of a sine ratio. We can use the following expression.

$$
x=\sin ^{-1}\left(\frac{5}{6.5}\right)=50.3^{\circ}
$$

The symbol $\sin ^{-1}$ means the inverse sine. We should note that $\sin ^{-1} x$ is NOT equal to $\frac{1}{\sin x}$.
Press SHIFT $+\sin$ when finding x using a scientific calculator.

The symbol for the inverse of other trigonometric functions are as follows:

$$
\begin{array}{ll}
\text { The inverse cosine: } & \cos ^{-1} \\
\text { The inverse tangent: } & \tan ^{-1}
\end{array}
$$

More examples on finding the unknown angles or unknown length of the sides of a right-angled triangle are shown on the next page.

Example

Find the unknown(s) in each of the following figures.
(a)
(b)
(c)

Solution

(a) $\tan \theta=\frac{1}{2} \Rightarrow \theta=\tan ^{-1}\left(\frac{1}{2}\right)=26.6^{\circ}$
(b) $\sin 75^{\circ}=\frac{x}{8} \Rightarrow x=8 \sin 75^{\circ}=7.73 \mathrm{~cm}$
$\cos 75^{\circ}=\frac{y}{8} \Rightarrow y=8 \cos 75^{\circ}=2.07 \mathrm{~cm}$
(c) $\cos 40^{\circ}=\frac{12}{p} \Rightarrow p=\frac{12}{\cos 40^{\circ}}=15.7 \mathrm{~cm}$
$\tan 40^{\circ}=\frac{q}{12} \Rightarrow q=12 \tan 40^{\circ}=10.1 \mathrm{~cm}$

Note that for a right-angled triangle, $a<c$ and $b<c$. Therefore,

$$
\begin{aligned}
& \sin \theta=\frac{a}{c}<1 \\
& \cos \theta=\frac{b}{c}<1
\end{aligned}
$$

Exercise 2

1 Find (i) $\sin \theta$, (ii) $\cos \theta$ and (iii) $\tan \theta$ for each of the following right-angled triangles.
(a)

(b)

(c)

2 Find the following using a scientific calculator.
(a) (i) $\sin 45^{\circ}$ (ii) $\cos 45^{\circ}$ (iii) $\tan 45^{\circ}$
(b) (i) $\sin 75^{\circ}$ (ii) $\cos 75^{\circ}$ (iii) $\tan 75^{\circ}$
(c) (i) $\sin ^{-1} 0.25$ (ii) $\cos ^{-1} 0.5$ (iii) $\tan ^{-1} 1.25$

3 Find the unknowns in each of the following right-angled triangles.
(a)

(b)

(c)

4 A ladder of 3 m long is put on a horizontal ground against a vertical wall. The base P of the ladder is 0.8 m from the wall.
(a) What is the height of the top Q of the ladder?
(b) Find angles x and y.

5 A ship sails 7 km due north and then sails 10 km due east to an island. Find the total displacement of the ship.

C Finding an angle using geometry

The following shows some properties in geometry that are needed in finding angles.

| Property | |
| :--- | :--- | :--- |
| $\angle \mathrm{s}$ at a pt. | |
| The sum of angles at a point is 360°. | |

$\angle \operatorname{sum}$ of \triangle

The angles in a triangle add up to 180°.

ext. \angle of \triangle
An exterior angle of a triangle is equal to the sum of its
two interior opposite angles. two interior opposite angles.

$d=a+b \quad($ ext. \angle of $\triangle)$

Example

Find the unknown angle in each of the following figures.
(a)
(b)
(c)

SOT and UOV are straight lines.

Solution

(a) $40^{\circ}+90^{\circ}+\theta=180^{\circ} \quad$ (adj. $\angle \mathrm{s}$ on st. line)

$$
\theta=50^{\circ}
$$

(b) $135^{\circ}+\angle O R S=180^{\circ} \quad$ (int. $\left.\angle \mathrm{s}, \mathrm{PQ} / / \mathrm{RS}\right)$

$$
\begin{aligned}
\angle O R S & =45^{\circ} \\
\angle O R S+x & =360^{\circ} \quad(\angle \mathrm{s} \text { at a pt. }) \\
45^{\circ}+x & =360^{\circ} \\
x & =315^{\circ}
\end{aligned}
$$

(c) $\quad \angle S O V=115^{\circ} \quad$ (vert. opp. $\angle \mathrm{s}$)

$$
\begin{aligned}
30^{\circ}+\angle S O V+y & =180^{\circ} \quad(\angle \text { sum of } \triangle) \\
30^{\circ}+115^{\circ}+y & =180^{\circ} \\
y & =35^{\circ}
\end{aligned}
$$

Exercise 3

1 Find the unknown angles in the following figures.
(a)

(b)

$A O B, C O D$ and $E O F$ are straight lines.
(c)

(d)

$T P R$ is a straight line.

2 Consider the figure as shown. $A B C D$ is a rectangle.

(a) Find $C D$.
(b) Find θ, and hence find $B C$.

3 Consider the figure as shown.

(a) By filling in the blanks, show that $\theta=15^{\circ}$.

In $\triangle O P Q$,

$$
\begin{aligned}
& 15^{\circ}+a+90^{\circ}= \\
& a= \\
&
\end{aligned}
$$

Besides, $b=a=$ \qquad (\qquad _)

In $\triangle O X Y$,

$$
\theta+b+90^{\circ}=180^{\circ}
$$

\qquad
$\theta+$ \qquad $+90^{\circ}=180^{\circ}$
$\theta=$ \qquad
(b) Given $O X=10 \mathrm{~cm}$, find $O Y$ and $X Y$.

4 In an orienteering game, Jenny starts at checkpoint A, passes checkpoints B and C, and arrives at checkpoint D.

(a) What is the shortest distance between checkpoints A and D ?
(b) Find the direction of D from A. Express your answer in reduced bearing.

Answers

Exercise 1

1
(a) 6.8 cm
(b) 2.01 cm
(c) 4.00 cm
(d) 15.0 cm

Exercise 2

1
(a) (i) 0.864
(ii) 0.504
(iii) 1.71
(b) (i) 0.444
(ii) 0.896
(iii) 0.496
(c) (i) 0.333
(ii) 0.943
(iii) 0.354

Exercise 3

1 (a) 50°
(b) 35°
(c) 30°
(d) 120°

2 (a) 8.66 cm
(b) $60^{\circ} ; 5 \mathrm{~cm}$

3 (a) In $\triangle O P Q$,

$$
\begin{aligned}
& 15^{\circ}+a+90^{\circ}=180^{\circ} \quad(\angle \text { sum of } \triangle) \\
& a=75^{\circ} \\
& \text { Besides, } b=a=75^{\circ} \quad(\text { vert. opp. } \angle \text { s }) \\
& \text { In } \triangle O X Y, \\
& \theta+b+90^{\circ}=180^{\circ} \quad(\angle \text { sum of } \triangle) \\
& \theta+75^{\circ}+90^{\circ}=180^{\circ} \\
& \theta=15^{\circ}
\end{aligned}
$$

(b) $\quad O Y=2.59 \mathrm{~cm} ; X Y=9.66 \mathrm{~cm}$

4 (a) 1210 m
(b) $\mathrm{S} 38.3^{\circ} \mathrm{E}$
$2 \quad$ (a) (i) 0.707 (ii) 0.707 (iii) 1
(b) (i) 0.966 (ii) 0.259 (iii) 3.73
(c) (i) 14.5° (ii) 60° (iii) 51.3°

3 (a) $a=3 \mathrm{~cm} ; b=3 \mathrm{~cm}$
(b) $m=7.55 \mathrm{~cm} ; \theta=43.3^{\circ}$
(c) $\quad \phi=8.13^{\circ} ; n=7.07 \mathrm{~cm}$
$4 \quad$ (a) $\quad 2.89 \mathrm{~m}$
(b) $x=74.5^{\circ} ; y=15.5^{\circ}$
$5 \quad 12.2 \mathrm{~km}\left(\mathrm{~N} 55.0^{\circ} \mathrm{E}\right)$

