Pythagoras' theorem and trigonometric functions

a Pythagoras' theorem

Pythagoras' theorem states that for any right-angled triangle, the three sides are related by the following equation:

$$c^2 = a^2 + b^2$$

Therefore, by using this equation, if the lengths of two sides of the triangle are known, the length of the third side could be found.

Consider a right-angled triangle with a = 3 cm and b = 4 cm.

By Pythagoras' theorem,

$$c^2 = a^2 + b^2$$

$$c = \sqrt{a^2 + b^2} = \sqrt{3^2 + 4^2} = \sqrt{25} = 5 \text{ cm}$$

You can verify this result by measuring c with a ruler.

More to know...

Pythagoras' theorem was named after the ancient Greek mathematician Pythagoras who was perhaps the first to give a proof of the theorem. Pythagoras showed that, for the squares on each side of a right-angled triangle, the area of the largest square is the sum of the area of the other two squares.

Example

Find the unknown in each of the following right-angled triangles.

Exercise 1

1 Find the unknown in each of the following right-angled triangles.

b Trigonometric functions

Consider the right-angled triangle shown. The trigonometric functions are defined as follows.

The sine (正弦) of angle
$$\theta$$
: $\sin \theta = \frac{a}{c}$
The cosine (餘弦) of angle θ : $\cos \theta = \frac{b}{c}$

The tangent (\mathbb{E} \mathfrak{H}) of angle θ : tan $\theta = \frac{a}{b}$

Note that trigonometric functions do not have any unit.

Example

Solution

From the triangle, a = 2 cm, b = 4 cm and $c = \sqrt{20}$ cm.

(a)
$$\sin \theta = \frac{a}{c} = \frac{2}{\sqrt{20}} = 0.447$$

(b) $\cos \theta = \frac{b}{c} = \frac{4}{\sqrt{20}} = 0.894$

(c)
$$\tan \theta = \frac{a}{b} = \frac{2}{4} = \frac{1}{2} = 0.5$$

Example

Consider the right-angled triangle as shown. Find

(a) $\sin \theta$;

(b) $\cos \theta$; and

(c) $\tan \theta$.

Solution

From the figure, a = 6 cm and c = 9 cm. Side b can be found by Pythagoras' theorem.

$$c^{2} = a^{2} + b^{2} \implies b = \sqrt{c^{2} - a^{2}} = \sqrt{9^{2} - 6^{2}} = \sqrt{45} = 3\sqrt{5} \text{ cm}$$

(a)
$$\sin \theta = \frac{a}{c} = \frac{6}{9} = \frac{2}{3} = 0.667$$

(b) $\cos \theta = \frac{b}{c} = \frac{3\sqrt{5}}{9} = 0.745$
(c) $\tan \theta = \frac{a}{c} = \frac{6}{5} = 0.894$

 $b^{-} 3\sqrt{5}$

More to know...

In a right-angled triangle with an acute angle θ , the sides of triangle are named as follows:

Hypotenuse (斜邊): the longest side in the triangle which is opposite the right angle

Adjacent side (鄰邊) of θ : the side next to θ (but not the hypotenuse)

Opposite side (對邊) of θ : the side opposite to θ

If the angle θ in a right-angled triangle is known, the trigonometric functions can be easily found by using a scientific calculator. For example, if $\theta = 30^\circ$, sin $30^\circ = 0.5$. (Remember to set the calculator in 'degree' mode first.)

D :	'degree' mode
sin 30	0.5

The sine ratio is always equal to 0.5 for any right-angled triangle with $\theta = 30^{\circ}$. From this, we can see that the trigonometric functions for any two triangles with the same θ will remain the same no matter how big or small the triangles are. The ratios depend on θ only.

Conversely, we can find the angle θ if one of the trigonometric functions is given. This can also be done by using a scientific calculator.

Example

Find the unknowns in the following figure.

Solution

By Pythagoras' theorem,

$$a^{2} = 6.5^{2} - 5^{2}$$

$$a = \sqrt{6.5^{2} - 5^{2}} = 4.15 \text{ cm}$$

$$\sin x = \frac{5}{6.5} \implies x = 50.3^{\circ}$$

$$\cos y = \frac{5}{6.5} \implies y = 39.7^{\circ}$$

More to know...

In the above example, we need to find the inverse of a sine ratio. We can use the following expression.

$$x = \sin^{-1}\left(\frac{5}{6.5}\right) = 50.3^{\circ}$$

The symbol sin⁻¹ means the inverse sine. We should note that sin⁻¹ x is NOT equal to $\frac{1}{\sin x}$.

Press SHIFT + \sin when finding x using a scientific calculator.

The symbol for the inverse of other trigonometric functions are as follows:

The inverse cosine: \cos^{-1}

The inverse tangent: \tan^{-1}

More examples on finding the unknown angles or unknown length of the sides of a right-angled triangle are shown on the next page.

Note that for a right-angled triangle, a < c and b < c. Therefore,

$$\sin \theta = \frac{a}{c} < 1$$
$$\cos \theta = \frac{b}{c} < 1$$

Exercise 2

1 Find (i) sin θ , (ii) cos θ and (iii) tan θ for each of the following right-angled triangles.

- 2 Find the following using a scientific calculator.
 - (a) (i) sin 45° (ii) cos 45° (iii) tan 45°
 - (b) (i) sin 75° (ii) cos 75° (iii) tan 75°
 - (c) (i) $\sin^{-1} 0.25$ (ii) $\cos^{-1} 0.5$ (iii) $\tan^{-1} 1.25$
- 3 Find the unknowns in each of the following right-angled triangles.
 - (a)

(c)

- 4 A ladder of 3 m long is put on a horizontal ground against a vertical wall. The base *P* of the ladder is 0.8 m from the wall.
 - (a) What is the height of the top Q of the ladder?
 - (b) Find angles x and y.

5 A ship sails 7 km due north and then sails 10 km due east to an island. Find the total displacement of the ship.

C Finding an angle using geometry

The following shows some properties in geometry that are needed in finding angles.

Property	Example
∠s at a pt.	
The sum of angles at a point is 360°.	
	c d
	b a
	$a+b+c+d=360^{\circ}$ (\angle s at a pt.)
adj. ∠s on st. line	Q
The sum of adjacent angles on a straight line is 180°.	
	$P \xrightarrow{a \qquad b}_{O} R$
	$a + b = 180^{\circ}$ (adj. \angle s on st. line)
vert. opp. ∠s	P \$
When two straight lines intersect, the vertically opposite	c c
angles formed are equal.	a b d
	<i>∧ ∨ Q</i>
	$a = b$ (vert. opp. $\angle s$)
	$c = d$ (vert. opp. \angle s)
Consider the case when two parallel lines (AB and CD)	
are cut by another straight line.	$A \xrightarrow[c]{a} B$
	$c \longrightarrow D$
	/
corr. ∠s, <i>AB</i> // <i>CD</i>	$a = b$ (corr. \angle s, $AB // CD$)
The corresponding angles are equal.	
alt. ∠s, <i>AB</i> // <i>CD</i>	$b = c$ (alt. \angle s, $AB // CD$)
The alternate angles are equal.	
int. \angle s, <i>AB</i> // <i>CD</i>	$b + d = 180^{\circ}$ (int. \angle s, <i>AB</i> // <i>CD</i>)
The sum of interior angles is 180°.	

Example

Find the unknown angle in each of the following figures.

Exercise 3

(a)

1 Find the unknown angles in the following figures.

AOB, COD and EOF are straight lines.

Pythagoras' theorem and trigonometric functions

2 Consider the figure as shown. *ABCD* is a rectangle.

- (a) Find CD.
- (b) Find θ , and hence find *BC*.
- **3** Consider the figure as shown.

- (a) By filling in the blanks, show that $\theta = 15^{\circ}$. In $\triangle OPQ$, $15^{\circ} + a + 90^{\circ} = _ (\angle \text{ sum of } \triangle)$ $a = _ _$ Besides, $b = a = _ (_ _ _)$ In $\triangle OXY$, $\theta + b + 90^{\circ} = 180^{\circ}$ $\theta = _ _$
- (b) Given OX = 10 cm, find OY and XY.

4 In an orienteering game, Jenny starts at checkpoint *A*, passes checkpoints *B* and *C*, and arrives at checkpoint *D*.

(a) What is the shortest distance between checkpoints A and D?

(b) Find the direction of *D* from *A*. Express your answer in reduced bearing.

Answers

Exercise 1

1 (a) 6.8 cm

(b) 2.01 cm

- (c) 4.00 cm
- (d) 15.0 cm

Exercise 2

- 1 (a) (i) 0.864
 - **(ii)** 0.504
 - **(iii)** 1.71
 - **(b) (i)** 0.444
 - **(ii)** 0.896
 - **(iii)** 0.496
 - (c) (i) 0.333
 - **(ii)** 0.943
 - **(iii)** 0.354
- **2** (a) (i) 0.707 (ii) 0.707 (iii) 1
 - (b) (i) 0.966 (ii) 0.259 (iii) 3.73
 - (c) (i) 14.5° (ii) 60° (iii) 51.3°
- **3** (a) *a* = 3 cm; *b* = 3 cm
 - **(b)** $m = 7.55 \text{ cm}; \ \theta = 43.3^{\circ}$
 - (c) $\phi = 8.13^{\circ}; n = 7.07 \text{ cm}$
- 4 (a) 2.89 m
 - **(b)** $x = 74.5^{\circ}; y = 15.5^{\circ}$
- 5 12.2 km (N55.0°E)

Exercise 3

- **1 (a)** 50°
 - **(b)** 35°
 - **(c)** 30°
 - **(d)** 120°
- 2 (a) 8.66 cm
 - **(b)** 60°; 5 cm
- 3 (a) In $\triangle OPQ$,
 - $15^{\circ} + a + 90^{\circ} = 180^{\circ} \quad (∠ \text{ sum of } \triangle)$ $a = 75^{\circ}$

Besides, $b = a = 75^{\circ}$ (vert. opp. \angle s)

In riangle OXY,

 θ + *b* + 90° = 180° (\angle sum of \triangle)

- **(b)** OY = 2.59 cm; XY = 9.66 cm
- 4 (a) 1210 m
 - (b) S38.3°E

 θ +