

- Execute buy/sell orders using automated pre-programmed trading instructions based on time, price, and volume.
- □ Used by investment banks, pension funds, mutual funds, and hedge funds
- □ In 2019, around 92% of Forex market tradings were performed by algorithms rather than humans
- \Box What are the trading instructions?

Signal Processing

 \Box A concert hall with different instruments playing

- \Box Each instrument is playing a single note continually
- \Box Can you tell them apart?

 \Box What if we have noise?

17 CityU

Pictures downloaded from internet. Maybe protected by copyright laws.

17

Evaluation
Test on Hang-Seng Index and Shanghai Composite Index from January 2007 to December 2011
\square N _b , N _s : numbers of buy days and sell days
\square $\mu_{\rm b}$, $\mu_{\rm s}$: mean daily return on buy and sell signals
\Box μ : mean daily return on buy-and-hold strategy
\Box T _b : test statistics on ($\mu_{\rm b} = \mu$) against ($\mu_{\rm b} > \mu$)
\Box $T_{\rm s}$: test statistics on $(\mu_{\rm s} = \mu)$ against $(\mu_{\rm s} > \mu)$
\Box $T_{\rm bs}$: test statistics on $(\mu_{\rm b} = \mu_{\rm s})$ against $(\mu_{\rm b} \neq \mu_{\rm s})$
□ BE: break-even transaction cost

Return on Hang Seng Index (07-11) using Haar's Wavelet										
daily return	$\begin{array}{c} \text{Rule} \\ (k_1, j_1, k_2, j_2, p) \end{array}$	$N_{ m b}$	$N_{ m s}$	$\hat{\mu}_{ m b} \ (T_{ m b})$	$\hat{\mu}_{ extsf{s}}\ (T_{ extsf{s}})$	$\hat{\mu}_{ m b} - \hat{\mu}_{ m s} \ (T_{ m bs})$	BE			
0.001 \downarrow annual	(1, 0, 5, 150, 0%)	741	492	0.00060 (0.80)	-0.00110 (-0.79)	0.00170 (1.30)	0.0411			
$\begin{array}{c} \mathrm{return} \\ \mathrm{25.2\%} \end{array}$	(1, 0, 5, 150, 1%)	716	475	0.00057 (0.76)	-0.00108 (-0.76)	0.00165 (1.23)	0.0440			
1-sided stat	(2, 15, 5, 150, 0%)	732	501	0.00058 (0.77)	-0.00104 (-0.75)	0.00162 (1.26)	0.0590			
$\begin{array}{c} 90\% \rightarrow 1.28 \\ 95\% \rightarrow 1.65 \end{array}$	(2, 15, 5, 150, 1%)	714	487	(0.00048)	(-0.00115) (-0.83)	(1.20) 0.00164 (1.24)	0.0533			
$99\% \rightarrow 2.33$	(3, 50, 5, 150, 0%)	699	534	(0.00) (0.00063) (0.81)	(-0.00100) (-0.76)	(1.24) 0.00163 (1.31)	0.0609			
$\begin{array}{c} \text{2-sided stat} \\ 90\% \rightarrow 1.65 \\ 05\% \rightarrow 1.09 \end{array}$	(3, 50, 5, 150, 1%)	679	506	(0.81) 0.00068 (0.87)	(-0.00116)	(1.31) 0.00184 (1.41)	0.0748			
$\begin{array}{c} 95\% \rightarrow 1.98\\ 99\% \rightarrow 2.58\end{array}$			efficie	ent market	(-0.85)	(1.41)				
							29 CityU			

China Shanghai Composite Index (07-11) using Haar's Wavelet									
daily return	$\begin{array}{c} \text{Rule} \\ (k_1, j_1, k_2, j_2, p) \end{array}$	N _b	$N_{ m s}$	$\hat{\mu}_{ m b}\ (T_{ m b})$	$\hat{\mu}_{ m s}\ (T_{ m s})$	$\hat{\mu}_{ m b} - \hat{\mu}_{ m s} \ (T_{ m bs})$	BE		
0.001 \downarrow annual	(1, 0, 3, 50, 0%)	586	629	0.00157 (1.77)	-0.00180 (-1.59)	$\begin{array}{c} 0.00337 \\ (2.92) \end{array}$	0.0684		
$\begin{array}{c} \mathrm{return} \\ 25.2\% \end{array}$	(1, 0, 3, 50, 1%)	563	617	0.00153 (1.73)	-0.00200 (-1.77)	(3.03)	0.0778		
1-sided stat	(1, 0, 4, 100, 0%)	649	566	0.00112 (1.38)	-0.00166 (-1.38)	0.00278 (2.37)	0.0596		
$95\% \rightarrow 1.28$ $95\% \rightarrow 1.65$ $99\% \rightarrow 2.33$	(1, 0, 4, 100, 1%)	621	546	0.00112 (1.34)	-0.00178 (-1.46)	0.00290 (2.40)	0.0557		
2-sided stat	(2, 15, 4, 100, 0%)	655	560	(1.45)	-0.00179 (-1.52)	(2.56)	0.0598		
$90\% \rightarrow 1.65$ $95\% \rightarrow 1.98$ $99\% \rightarrow 2.58$	(2, 15, 4, 100, 170)	024	340	(1.62)	(-1.42)	(2.59)	0.0040		
							30° CityU		

Bachelor of Laws & Bachelor of Science in Computing Mathematics 法律學學士與理學士(計算數學) 雙學位課程 (JS1220)

- The five-year double degree programme adopts an integrated curriculum
- 1st 4th years tuition fees funded by UGC;
 5th year on self-financing basis

Highlights:

- Provide legal specialisations with analytical skills such as probability, statistics, quantitative analysis, and logic that are important in the legal world
- Address market needs in intellectual property (IP) and legal serving industries
- Finance, IT, medical, start-up institutions need data-oriented IP and legal services

35

LLB/BSc Curriculum

City

